extensions, minimality and idempotents of certain semigroup compactifications

thesis
abstract

در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرار گرفته است . در این راستا مفهوم فشرده سازی تحت مزدوج پایا تعریف و مورد بررسی قرار گرفته است . در فصل سوم ابتدا با کارهای chou در زمینه گروههای تقریبا دوره ای مینیمال آشنا شده و سپس به کمک مقالات junghenn به توسیع این مفهوم روی نیم گروهها پرداخته ایم و نهایتا در فصل چهارم با پیگیری کارهای ruppert در زمینه ساخت توابع دوره ای، توابع تقریبا دوره ای خاصی مطرح و به کمک آنها با این سوال ruppert که آیا مجموعه عناصر خودتوان در یک فشرده سازی نیم توپولوژیکی مجموعه اعداد طبیعی بسته است یا نه؟ پاسخ منفی داده شده است .

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

Biflatness of certain semigroup algebras

In the present paper, we consider biflatness of certain classes of semigroupalgebras. Indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. Also, for a certain class of inversesemigroups S, we show that the biflatness of ell^{1}(S)^{primeprime} is equivalent to the biprojectivity of ell^{1}(S).

full text

new semigroup compactifications via the enveloping semigroups of associated flows

this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.

15 صفحه اول

Flow Compactifications of Nondiscrete Monoids, Idempotents and Hindman’s Theorem∗†

We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.

full text

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

full text

Semigroup Compactifications by Generalized Distal Functions

The notion of "Semigroup compactification" which is in a sense, a generalization of the classical Bohr (almost periodic) compactlflcation of the usual additive reals R, has been studied by J.F. Berglund et. al. [2]. Their approach to the theory of semigroup compactification is based on the Gelfand-Naimark theory of commutative Calgebras, where the spectra of admissible C*-aigebras, are the semi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023